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Abstract. We introduce a new approach for the localization of 3D
anatomical point landmarks based on 3D parametric intensity models
which are directly fit to the image. We propose an analytic intensity
model based on the Gaussian error function in conjunction with 3D rigid
transformations as well as deformations to efficiently model tip-like struc-
tures of ellipsoidal shape. The approach has been successfully applied to
accurately localize anatomical landmarks in 3D MR and 3D CT image
data. We have also compared the experimental results with the results
of a previously proposed 3D differential operator. It turns out that the
new approach significantly improves the localization accuracy.

1 Introduction

The localization of 3D anatomical point landmarks is an important task in med-
ical image analysis. Landmarks are useful image features in a variety of applica-
tions, for example, for the registration of 3D brain images of different modalities
or the registration of images with digital atlases. The current standard proce-
dure, however, is to localize 3D anatomical point landmarks manually which is
difficult, time consuming, and error-prone. To improve the current situation it
is therefore important to develop automated methods.

In previous work on the localization of 3D anatomical point landmarks, 3D
differential operators have been proposed (e.g., Thirion [14], Rohr [12]). Recently,
an evaluation study of nine different 3D differential operators has been performed
by Hartkens et al. [8]. 2D differential approaches for extracting point landmarks
in 2D medical images have been described in Briquer et al. [3] and Hartkens
et al. [7]. For other approaches for extracting point landmarks in 2D images,
see Walker et al. [15] and Likar et al. [9]. While being computationally efficient,
differential operators incorporate only small local neighbourhoods of an image
and are therefore relatively sensitive to noise, which leads to false detections and
also affects the localization accuracy. Recently, an approach based on deformable
models was introduced (Frantz et al. [5], Alker et al. [1]). With this approach
tip-like anatomical structures are modeled by surface models, which are fit to
the image data using an edge-based fitting measure. However, the approach
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Fig. 1. Ventricular horns of the human brain (from [13]) and the human skull (from
[2]). Examples of 3D point landmarks are indicated by black dots.

requires the detection of 3D image edges as well as the formulation of a relatively
complicated fitting measure, which involves the image gradient as well as 1st
order derivatives of the surface model.

We have developed a new approach for the localization of 3D anatomical
point landmarks. In contrast to previous approaches the central idea is to use
3D parametric intensity models of anatomical structures. In comparison to differ-
ential approaches, larger image regions and thus semi-global image information
is taken into account. In comparison to approaches based on surface models, we
directly exploit the intensity information of anatomical structures. Therefore,
more a priori knowledge and much more image information is taken into ac-
count in our approach to improve the robustness against noise and to increase
the localization accuracy. In addition, a much simpler fitting measure can be
used which does not include the image gradient or derivatives of the model.

This paper is organized as follows: First, we introduce our 3D parametric
intensity model (Section 2). Then, we describe the model fitting process (Section
3). Experimental results of applying our new approach to 3D synthetic data and
3D tomographic images of the human head are presented in Section 4.

2 Parametric Intensity Model for Tip-Like Structures

Our approach uses 3D parametric intensity models which are fit directly to the
intensities of the image data. These models describe the image intensities of
anatomical structures in a semi-global region as a function of a certain number
of parameters. The main characteristic, e.g., in comparison to general deformable
models, is that they exhibit a prominent point which defines the position of the
landmark. By fitting the parametric intensity model to the image intensities
we obtain a subvozel estimate of the position as well as estimates of the other
parameters, e.g., the image contrast. In [11] such type of approach has been used
for localizing 2D corner and edge features.

As an important class of 3D anatomical point landmarks we here consider
tip-like structures. Such structures can be found, for example, within the human
head at the ventricular system (e.g., the tips of the frontal, occipital, or temporal



horns, see Fig. 1) and at the skull (e.g., the tip of the external occipital protu-
berance). The shape of these anatomical structures is ellipsoidal. Therefore, to
model them we use a (half-)ellipsoid defined by three semi-axes (r,,ry,r;) and
the intensity levels ag (outside) and a; (inside). We also introduce Gaussian
smoothing specified by a parameter ¢ to incorporate image blurring effects. The
exact model of a Gaussian smoothed ellipsoid cannot be expressed in analytic
form and thus is computationally expensive. To efficiently represent the resulting
3D intensity structure we developed an analytic model as an approximation. This
model is based on the Gaussian error function & (z) = ffoo (27r)71/2 e=6 /2 d¢
and can be written as
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where x = (z,y, z). We define the tip of the ellipsoid w.r.t. the semi-axis r, as the
position of the landmark, which also is the center of the local coordinate system.
In addition, we include a 3D rigid transform R with rotation parameters («, 3,7)
and translation parameters (zg,%o,20). The translation parameters define the
position of the landmark in the 3D image. Moreover, we extend our model to a
more general class of tip-like structures by applying a tapering deformation T
with the parameters p, and p,, and a bending deformation B with the parameters
0 (strength) and v (direction), which are defined by
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This results in our parametric intensity model with a total of 16 parameters:
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3 Model Fitting Approach

Estimates of the model parameters in (4) are found by a least-squares fit of
the model to the image intensities g (x) within semi-global regions-of-interest
(ROIs), thus minimizing the objective function
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Note, the fitting measure does not include any derivatives. This is in contrast
to previous fitting measures for surface models which incorporate the image
gradient as well as 1st order derivatives of the model (e.g., [5]).

For the minimization we apply the method of Levenberg-Marquardt, incor-
porating 1st order partial derivatives of the intensity model w.r.t. the model



parameters. The partial derivatives can be derived analytically using the gener-
alized chain rule (e.g., [4]). Note, we do not need to compute the image gradient
as is the case with surface models. We need 1st order derivatives of the intensity
model only for the minimization process, whereas the surface model approach
requires 2nd order derivatives for the minimization.

3.1 Means to improve stability

To improve the robustness as well as the accuracy of model fitting, we separated
the model fitting process into three different phases. In the first phase, only a
subset of the model parameters are allowed to vary in the minimization process
(parameters for semi-axes, rotation, and smoothing). In the second phase, the
parameters for the intensity levels and the translation are allowed to vary addi-
tionally. Finally, the bending and tapering parameters are included in the third
phase.

During model fitting, which is an iterative process, it may happen that the
minimizer yields an invalid value for a certain parameter, e.g., a negative value
for the smoothing parameter o or a semi-axis. We developed two strategies to
cope with this problem. The first strategy continues the minimization with the
last valid parameter vector where the problematic parameter is not allowed to
vary for a few iterations. Normally, after a few iterations it is safe to activate
this parameter again as the overall parameter vector has changed. Rarely, mainly
when using synthetic data, the first strategy does not solve the problem. In this
case, the second strategy is applied. With this strategy the last valid parameter
vector is modified by slightly changing the value of the problematic parameter
towards the invalid value. In our implementation, we use the two strategies
alternatingly, always starting with the preferable first strategy (which does not
change the parameter values).

3.2 Calibration of the intensity model

Our 3D intensity model in (1) represents an approximation to a Gaussian
smoothed ellipsoid. In order to validate our model, we applied the fitting scheme
to synthetic 3D images, which have been obtained by discrete Gaussian smooth-
ing of an ideal (unsmoothed) ellipsoid. In these experiments it turned out that
we obtain a systematic error in estimating the landmark position. To cope with
these errors we developed a nonlinear correction function which “calibrates” the
model. The correction function depends on the estimated parameters 7, 7, 7.
as well as o and is given by

Dzg = c1 + €26 + c362 + (ca + €55 + €662) 27, (Fp + 7)) 7" (6)
To determine the coefficients ¢y, ..., cs we devised a large number of exper-

iments and systematically varied the respective parameters. In total, we used
more than 2000 synthetic 3D images (not considering tapering and bending).
Incorporating the correction function, we achieved an average localization error
of less than 0.2 voxels.



3.3 ROI size selection

From initial experiments it turned out that the used size of the ROI for model
fitting has a major influence on the success and the accuracy. If the ROI is
too small then we do not incorporate enough image information into the model
fitting process to guarantee a successful fitting. On the other hand, if the ROI
is too large we might include neighboring structures which negatively influences
the estimated parameters. In addition, with an increasing ROI it becomes more
likely that our intensity model does not well describe the anatomical structure at
hand since a larger part of the structure has to be modelled. As a consequence,
the size of the ROI should be well chosen for each landmark in order to improve
the results. Also, though the tapering and bending deformations greatly extend
the spectrum of shapes that can be modelled, in some cases these deformations
tend to decrease the robustness of model fitting. Thus, for each landmark it
should be well decided whether the deformations are included or not.

In order to choose an appropriate size for the ROI and decide which types of
deformations should be included in the model, we propose the following scheme,
which was successfully applied in our experiments. For each landmark, we varied
the diameter of the spherical ROI from 11 voxels to 41 voxels in steps of two
voxels. For each value of the diameter, we apply our intensity model in four
variants: without deformations, with bending deformation only, with tapering
deformation only, and with both types of deformations. To gain information
about the robustness of model fitting we apply the model fitting for each variant
20 times with different sets of initial parameters. The different parameter sets
are obtained by randomly varying the initial values in a range of +2 voxels for
the semi-axes and translations, =8 grey levels for the intensities, +0.25 voxels
for o, and £0.15 radians for the angles. From these 20 fits we automatically
exclude all results which obviously are outliers. These are results with a distance
of more than 5 voxels to the initial position, results with an estimated parameter
r, smaller than one or both of the other semi-axes (thus the result is not a tip
defined as the location of maximal curvature of the ellipsoid), and results which
are drastic outliers, e.g., a semi-axis larger than 1000 voxels or a smoothing value
o of more than 10. Using the remaining fits, we calculated the product of the
variances of the three translation parameters as a measure for the robustness of
the model fitting w.r.t. different initial parameters.

Finally, we chose the combination of ROI size and deformation variant where
the robustness measure was minimal and more than half of the fits were included.
Only in one case, namely, the right temporal horn in one image, we accepted the
minimum even with less than half of the fits included, because the initialization
with the differential operator was very poor. For most landmarks, this simple
heuristic leads to a good choice of the ROI size and deformation variant. How-
ever, for some landmarks the estimated position was far away from the ground
truth position. In these few case, we manually selected the ROI size and the de-
formation variant, which resulted in an estimated position closest to the initial
position and still being sufficiently robust.



Table 1. Size and resolution of the medical 3D images used in the experiments.
’]

[Image [Slices [Size in Voxels [Resolution in mm
Woho (MR)||sagittal|256 x 256 x 256/1.0 x 1.0 x 1.0
C06 (MR) |laxial [256 x 256 x 120|0.859 x 0.859 x 1.2
C06 (CT) |laxial [320 x 320 x 87]0.625 x 0.625 x 1.0

4 Experimental Results

Our approach has been applied to 3D synthetic data as well as to two 3D MR
images and one 3D CT image of the human head.

4.1 3D Synthetic Data

In the first part of the synthetic experiments we applied our approach to 3D
image data generated by the intensity model itself with added Gaussian noise.
In total we carried out about 2400 experiments with different parameter settings
and achieved a very high localization accuracy with an error in the estimated
position of less than (.12 voxels. We also found that the approach is robust w.r.t.
the choice of initial parameters. Additionally, for about 1600 experiments with
similar settings but very intense Gaussian noise down to a signal-to-noise ratio
of ca. 1, the localization error turned out to be less than 0.52 voxels.

In the second part of the experiments, we used 3D image data generated
by discrete Gaussian smoothing of an ideal (unsmoothed) ellipsoid with added
Gaussian noise. After applying the correction function (6) we found that the av-
erage error in the estimated position was 0.25 voxels. In contrast, the uncorrected
position had an average error of 1.25 voxels.

4.2 3D Medical Images

We also applied the new approach to three real 3D tomographic images of the
human head (datasets Woho and C06). The sizes and resolutions of the images
are listed in Table 1. To achieve isotropic image data in case of the C06 image
pair, we applied an interpolation based on 3rd-order polynomials (Meijering [10])
prior to model fitting.

We considered seven tip-like landmarks, i.e. the frontal, occipital, and tem-
poral horns (left and right) as well as the external occipital protuberance. For
these landmarks in all three images we used as ground truth, positions that were
manually determined in agreement with up to four persons. For the CT image,
we did not consider the temporal horns since either the ground truth position
was missing due to low signal-to-noise ratio (left horn) or it was not possible to
successfully fit the intensity model (right horn). Figure 2 shows the image data
in a ROI of the right horn. Particularly with this landmark the image quality
was relatively bad. In general, the quality of the CT image at the ventricular
system was worse in comparison to the MR, images.



Fig. 2. Five axial 2D slices showing a ROI of 21 x 21 x 5 voxels of the right temporal
horn in the C06 image pair (top MR, bottom CT). The ground truth position of the
landmark is marked by the square in the center image. The slices on the left are directly
below and the slices on the right are directly above the center slice in the 3D image.

Parameter Settings The fitting procedure described above requires the deter-
mination of suitable initial parameter values. The specification of these values
is an important and not trivial task. Often all parameter values are initialized
manually, which is time-consuming. Here, we automatically initialize half of the
model parameters. Values for the most important parameters, namely, the trans-
lation parameters (xq, yo, 20) defining the position of the landmark were obtained
by a 3D differential operator. Here we used the operator Op3 = detC, /traceC,,
where C, is the averaged dyadic product of the image gradient ([12]). The
smoothing parameter ¢ was always initialized with 1.0 and the deformation
parameters p,, py, 0, and v were all initialized with 0.0; thus, the intensity
model was always initialized as an ellipsoid without deformation. The remaining
parameters for the semi-axes (r;,7y,7;), the intensity levels ag and a1, and the
rotation angles («, 3,) were initialized manually. For the left and right occipital
horns in the Woho image, the resulting positions of the 3D differential operator
Op3 are relatively far away from the ground truth positions (see Table 4). In
addition, the anatomical structure of the occipital horns in this image is rather
untypical, thus requiring good initial parameters for successful model fitting.
Therefore, we initialized the translation parameters in these two cases manually.

Results Tables 2, 3, and 4 show the fitting results for the considered land-
marks. Having chosen the ROI size and the deformation variant we applied the
model fitting 100 times with different sets of randomly chosen initial parameters
to obtain accurate means and standard deviations of the estimated parameter
values. On average, model fitting succeeded for each landmark in 59 out of 100
cases with an average of 75 iterations and a mean fitting error (positive root of
the mean squared error) of €y pr = 20.48 grey levels. For the external occipital
protuberance we obtained a relatively large fitting error. Excluding the result
for this landmark the mean fitting error improves to €y pp = 10.60 grey levels.
There are two reasons for the larger mean fitting error of the external occipital



Fig. 3. 3D contour plots of the fitted intensity model for the external occipital pro-
tuberance within the original image pair C06 (left MR and right CT). The marked
axes indicate the estimated landmark positions. Note, the size of the ROI and the used
deformations are different.

protuberance. In case of the CT image, the difference in the intensity levels ag
and a; is more than a magnitude larger than in all other landmarks. Thus, a
larger mean fitting error is a consequence. In case of the two MR images, it turns
out that our intensity model is not as well suited for this landmark as for the
other landmarks. The reason is that the model assumes homogeneous intensities
outside of the ellipsoid. In case of the external occipital protuberance which is
located directly at the skull, we always find within the ROI three different inten-
sity levels for the intensity ag, i.e. skin (white and grey) and air (black). Thus,
the model has to average these intensities, which explains the relatively large
mean fitting error and also causes the larger standard deviations in the position
estimates. However, as the estimated landmark position always turns out to be
very good, our model is nevertheless applicable and we included the results. We
have visualized the results for this landmark for the C06 image pair in Figure 3
using 3D Slicer ([6]). The fitted intensity model is visualized as a contour plot,
using the model’s intensity at the estimated landmark position as contour value.

The average distance between the estimated landmark positions and ground
truth positions for all 19 landmarks computes to € = 1.14mm. In compari-
son, using the 3D differential operator Op3, we obtain an average distance of
€op3 = 2.18mm. Thus, the localization accuracy with our new approach turns
out to be much better. For the surface model approach ([5]), only comparable
data for four landmarks is available, namely, the left and right frontal and oc-
cipital horns of the C06 MR image. The average distance of the surface model
approach for these four landmarks is €gyry = 1.26mm, whereas our approach
yields € = 0.68mm and the differential operator éppz = 2.17mm. Bearing in
mind the small number of landmarks, we can conclude that the localization ac-
curacy with our new approach is better than the surface model approach, while
the differential operator Op3 yields the worst result. Note, the listed distances &
are not calibrated since for nearly all landmarks deformations were included in
the model.

In Figure 4 we visualized the fitting result for the left occipital horn in the
C06 (MR) image. Besides the 3D contour plot of the fitted intensity model
within three adjacent slices of the original data we also marked the estimated



Fig. 4. 3D contour plots of the fitted intensity model for the left occipital horn within
the C06 (MR) image. The result is shown with and without the model for three adjacent
slices of the original data. The marked axes indicate the estimated landmark positions
for the new approach (white) and the differential operator Op3 (black).

landmark positions for the new approach (white) and the differential operator
Op3 (black). It can be seen that the model describes the depicted anatomical
structures fairly well. Here, the distance between the estimated position of our
approach to the ground truth position (not shown) is 0.15mm whereas the dis-
tance of the differential operator Op3 is 3.32mm. The estimated position of the
differential operator is clearly inside the structure and relatively far away from
the tip of the horn. This is a typical result for the long and thin ventricular horns
in our experiments. The reason for this systematic localization error results from
smoothing the image data when computing the image gradient, which is neces-
sary in order to calculate the response of the differential operator. In contrast,
our approach directly exploits the image intensities (without smoothing) and is
therefore not vulnerable to this effect.

Also, the figures demonstrate that the spectrum of possible shapes of our
intensity model is relatively large. For example, Figure 3 shows a strongly de-
formed ellipsoid (left) as well as a normal ellipsoid (right) whereas Figure 4 shows
a long and thin tapered ellipsoid and Figure 5 shows wider tapered ellipsoids.

The execution time of our algorithm is mainly dependent on the size of
the ROI, the chosen variant of the deformation, and the quality of the initial
parameters. As a typical example, the fitting time for the right temporal horn
in the Woho image including tapering and bending deformations and a diameter
of the ROT of 19 voxels is ca. 1s (on a AMD Athlon, 1.7GHz, running Linux).



4 i,
Fig. 5. 3D contour plots of the fitted intensity models for the left and right frontal

horn within an MR image (Woho). The result is shown for four different slices of the
original data.

5 Discussion

The experiments verify the applicability of our new approach, which yields sub-
voxel positions of 3D anatomical landmarks. The intensity model describes the
anatomical structures fairly well as can be seen from the 3D contour plots. Also,
the figures demonstrate that the spectrum of possible shapes of our intensity
model is relatively large. Issues for further work are the automatic initialization
of all parameters of the model based on differential properties of the image as
well as to improve the computational efficiency for selecting the ROI size.
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