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Abstract. This work studies limits on estimating the width of thin
tubular structures in 3D images. Based on nonlinear estimation theory
we analyze the minimal stochastic error of estimating the width. Given
a 3D analytic model of the image intensities of tubular structures, we
derive a closed-form expression for the Cramér-Rao bound of the width
estimate under image noise. We use the derived lower bound as a bench-
mark and compare it with three previously proposed accuracy limits
for vessel width estimation. Moreover, by experimental investigations we
demonstrate that the derived lower bound can be achieved by fitting a
3D parametric intensity model directly to the image data.

1 Introduction

Segmentation and quantification of 3D tubular structures from 3D medical im-
age data is crucial for diagnosis, treatment, and surgical planning. In particular,
the accurate quantification of vessels is indispensable. For example, an abnormal
narrowing of arteries (stenosis) is one of the main reasons for heart and vascu-
lar diseases as the essential blood flow is hindered. For instance, the blocking
of a coronary artery can lead to a heart attack. In clinical practice, images of
the human vascular system are acquired using different imaging modalities, for
example, 3D magnetic resonance angiography (MRA) or computed tomography
angiography (CTA). An essential task is the accurate estimation of the width
(diameter) of vessels, for example, to identify and quantify stenoses, in partic-
ular for thin vessels such as coronary arteries. For a recent review on vessel
segmentation techniques we refer to [1].

Concerning thin vessels in 3D images, limits on the accuracy of estimating
the vessel width have been studied by different groups using different approaches
(e.g., [2,3,4], see below for details). However, the results of these studies have not
yet been compared with each other. For a quantitative comparison of the pro-
posed limits it would be preferable to have a benchmark. Analytic benchmarks
for performance evaluation have been introduced for a different task in medical
image analysis, namely, the localization of 3D landmarks in [5].

In this contribution, based on nonlinear estimation theory, we have analyzed
the minimal stochastic error of estimating the width of 3D tubular structures.
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Given a 3D analytic model of the image intensities of a tubular structure as
well as white Gaussian image noise, we have derived a closed-form expres-
sion for the Cramér-Rao bound (CRB) of the vessel width, which defines the
minimal uncertainty of quantifying the width. In this work, we use a cylinder
model of 3D tubular structures, which is much more complex compared to the
Gaussian landmark models in [5]. In addition, we consider the width of this
tubular structure instead of the position of landmarks. We employ the derived
CRB as a benchmark and compare it with previously proposed accuracy limits
of three different approaches for vessel width estimation [2,3,4]. Moreover, by
experimental investigations we demonstrate that the derived lower bound can
be achieved by fitting a 3D parametric intensity model directly to the image
data.

For 2D approaches addressing the accuracy of segmenting thin vessels see, for
example, Sonka et al. [6]. Work on accuracy limits of thickness measurements of
3D sheet-like structures such as the vertebral cortical shell or the brain cortex has
been described in [7,8], and for work on the analysis of systematic localization
errors of curved surfaces see [9]. Note that the focus in these previous works is
on the influence of the point spread function and sampling properties whereas
the influence of image noise is not considered.

This paper is organized as follows. In the following section, we derive a closed-
form expression for the CRB of a cylinder model (Sect. 2). We then present
experimental results of model fitting and compare them with the theoretical
results given by the CRB. In addition, we demonstrate the applicability of model
fitting using different 3D medical MR images (Sect. 3). In Sect. 4, we compare the
theoretical results with proposed accuracy limits of three different approaches.
Finally, we give a conclusion in Sect. 5.

2 Cramér-Rao Lower Bound for 3D Cylinder Model

To derive a benchmark for performance evaluation of 3D segmentation ap-
proaches for tubular structures, we use a 3D analytic model that represents the
image intensities of tubular structures. The model we employ is an ideal sharp
3D cylinder convolved with a 3D Gaussian, which is well-suited to model tubular
structures of different widths (e.g., [3,4]). This 3D cylinder model comprises pa-
rameters for the width of the tubular structure (radius R), the image blur σ, as
well as the image contrast a between the intensity levels of the tubular structure
and the surrounding tissue. In contrast to a 3D Gaussian tubular model this
model has two separate parameters for the vessel width and the image blur. A
2D cross-section of this Gaussian smoothed 3D cylinder is defined as

gDisk (x, y, R, σ) = Disk (x, y, R) ∗ G2D
σ (x, y) (1)

where ∗ denotes convolution, Disk (x, y, R) is a two-valued function with value 1
if r ≤ R and 0 otherwise (for r =

√
x2 + y2), as well as the 2D Gaussian function

G2D
σ (x, y) = Gσ(x) Gσ(y), where Gσ(x) =

(√
2πσ

)−1
e−

x2
2σ2 . By exploiting the
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symmetries of the disk and the 2D Gaussian function as well as the separability
of the 2D convolution, we can rewrite (1) as

gDisk (x, y, R, σ) = 2
∫ R

−R

Gσ(r − η) Φσ

(√
R2 − η2

)
dη

− (Φσ (r + R) − Φσ (r − R)) (2)

using the Gaussian error function Φ (x) =
∫ x

−∞ G1(ξ) dξ and Φσ (x) = Φ (x/σ).
Extending the 2D disk in z-direction as well as including the image contrast a
yields the 3D cylinder model

gM,Cylinder(x, R, σ, a) = a gDisk(x, y, R, σ) , (3)

where x = (x, y, z)T . To determine a lower bound for estimating the radius of
the tubular structure, we utilize the Fisher information matrix F. In the case of
3D images, the Fisher information matrix is given by

F =
vox−3

σ2
n

∫ w

−w

∫ w

−w

∫ w

−w

∂gM (x,p)
∂p

(
∂gM (x,p)

∂p

)T

dx (4)

where σn denotes the standard deviation of the additive white Gaussian image
noise, p are the considered model parameters, w is the half-width of the cubic
region-of-interest (ROI), and vox denotes the spatial unit in 3D (i.e. one voxel
is a cube with a size of one vox in each dimension). Here we are interested in
estimating the radius R of the tubular structure, assuming that the values of
the remaining parameters are known, i.e. p = (R). The matrix F consists of one
element and the Cramér-Rao lower bound (CRB) of the uncertainty is given by
(e.g., [10])

σ2
R̂

≥ σ2
CRB, R̂

= F−1. (5)

The bound determines the minimal possible uncertainty of the estimated param-
eter R for a given level of image noise. For calculating the CRB in (5), the first
order partial derivative of the cylinder model w.r.t. the radius R is required.
Fortunately, whereas a closed-form solution of the Gaussian smoothed cylin-
der model in (3) is not known, a closed-form expression of the required partial
derivative can be derived analytically:

∂gM,Cylinder(x, R, σ, a)
∂R

= a

√
2πR

σ
Gσ

(√
r2 + R2

)
I0

(
rR

σ2

)
, (6)

with I0 being the modified Bessel function of the first kind of order 0 (e.g., [11]).
Here, we consider cylindrical ROIs of half-width (radius) w within the xy-

plane and half-width wz in z-direction (along the cylinder) around a position
on the centerline of the cylinder. A cylindrical ROI as compared to a cubic (or
cuboidal) ROI is a more natural choice for tubular structures and also reduces
the complexity in the calculation of the involved integrals since cylindrical co-
ordinates can be used. Assuming that the half-width w of the ROI (within the
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Fig. 1. Theoretical and experimental precision for estimating the radius R as a function
of the radius R, using a = 100 gr, σ = 1vox, σn = 5gr, and wz = 12vox.

xy-plane) is much larger than the radius R and the standard deviation σ, the
closed-form expression of the CRB in (5) using (6) can be stated as

σ2
CRB, R̂

=
σ2σ2

n e
R2

2σ2

2πa2R2 wz I0
(

R2

2σ2

) vox3. (7)

It can be seen that the precision increases (i.e. the bound decreases) with de-
creasing image noise σn as well as increasing image contrast a and size wz of the
3D ROI along the cylinder, and depends in a more complicated way on the radius
R and the image blur σ (compared to σn, a, and wz). The limit of σ2

CRB, R̂
in (7)

for R → 0 is ∞, and the limit for R → ∞ is 0. The curve in Fig. 1 visualizes the
CRB in terms of the standard deviation (square root of the variance) σCRB, R̂

as a function of the radius R. It can be seen that the bound is monotonically
decreasing as a function of the radius R.

To give an impression of the achievable accuracy, we state numerical examples
of the CRB of the radius for thin tubular structures. For example, using a =
100gr, σ = 1 vox, σn = 5gr, and wz = 12vox, for radii R of 0.5, 1, 2, and 3 vox
the minimal uncertainties σCRB, R̂ compute to 0.012, 0.007, 0.005, and 0.004vox,
respectively (gr denotes the unit of the intensities in grey levels). Thus, for thin
tubular structures the precision is well in the subvoxel range. However, for very
thin tubular structures (e.g., a width of 1 vox) in combination with extremely
poor imaging conditions (i.e. a very poor signal-to-noise ratio), the uncertainty
of the radius can excess the radius of the tubular structure itself. For example,
for an extremely low image contrast of a = 5 gr, a radius of R = 0.5vox, and a
small size of the ROI along the cylinder of wz = 5vox, the CRB computes to
0.76 vox, which is about 50% larger in comparison to the radius.

Note that the derived CRB in (7) does not impose a general limit for small radii
of tubular structures (i.e. the equation is valid for R → 0). However, a limit for
small radii can be determined based on the desired maximal uncertainty of the
radius (e.g., 5% or 0.1 vox). For example, for a maximal uncertainty of 5%, the
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Fig. 2. 2D axial sections of 3D synthetic cylinders of radii R = 1 (left), R = 3 (middle),
and R = 6 (right), using a = 100 gr, σ = 1 vox, σn = 5gr, and wz = 12vox

limit computes to R = 0.34vox (using the same parameter settings as above), i.e.
the minimal width of 2R = 0.68vox is below image resolution.

3 3D Width Estimation by Model Fitting

3.1 3D Synthetic Image Data

We have carried out experiments to analyze how the theoretical bound described
above relates to practice. To this end, we have generated 3D images based on
the 3D cylinder model gM,Cylinder in (3) with additive white Gaussian noise for
different radii R = 0.5, 1, 2, 3, 4, 5, 6vox and using the same parameter settings as
above (i.e. a = 100gr, σ = 1vox, σn = 5 gr). Fig. 2 shows 2D axial sections of 3D
synthetic cylinders of radii R = 1vox (left), R = 3 vox (middle), and R = 6vox
(right). To estimate the radius of 3D tubular structures we apply a model fitting
approach [4] using a cylindrical ROI of size w = wz = 12vox. A closed-form
solution of the Gaussian smoothed cylinder gM,Cylinder is not known. Whereas in
[4] an analytic approximation has been used, we here employ numeric integration
to compute the model function. Thus we have the same model for the theoretical
analysis and the experiments. In total, for each value of the radius we carried
out N = 1000 experiments (randomly varying the initial model parameters as
well as the noise level) and determined the precision σR̂ of the radius by the
standard deviation of the estimated radii R̂i, i.e.

σR̂ =

√√
√
√ 1

N − 1

N∑

i=1

(
R̂i − R̄

)2
, (8)

where R̄ denotes the mean.
From the experiments it turned out that the radius estimate is unbiased, i.e.

the systematic error is zero. The estimated precision σR̂ of the radii are rep-
resented by the dots in Fig. 1. The curve indicates the theoretical precision
according to the derived CRB σCRB, R̂. It turns out that the agreement between
the theoretical and the experimental values is very good, in particular, for thin
vessels (e.g., R = 0.5 vox), i.e. the derived lower bound can indeed be achieved
experimentally. The agreement is even more remarkable since the analytic deriva-
tion does not consider discretization effects due to sampling and quantization,
while in the experiments discrete images have been used.
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Fig. 3. Segmentation results of applying the 3D cylindrical intensity model to arteries
of the pelvis (left), arteries of the thigh (middle), and to the spinal cord (right)

3.2 3D Medical MR Images

To demonstrate the applicability for real images, we have also applied the model
fitting approach to 3D MR image data of the human (see Sect. 4 below for a
brief description of the model fitting approach). For reasons of computational
complexity we here use an analytic approximation of the Gaussian smoothed
cylinder gM,Cylinder as in [4]. As a consequence, model fitting is about 80 to 300
times faster (depending on the size of the 3D ROI) in comparison to numerically
integrating the model function. As an example, Fig. 3 shows the segmentation
results for arteries of the pelvis (left) as well as for thigh arteries (middle) in
3D MRA images. It can be seen that arteries of quite different sizes including
relatively thin arteries have been successfully segmented. While above we con-
sidered the segmentation of blood vessels, Fig. 3 (right) shows the segmentation
result for a different type of tubular structure. Here we successfully segmented
the spinal cord in a 3D MR image of the neck.

4 Comparison of Different Limits

Having derived an analytic benchmark for 3D vessel width estimation and hav-
ing shown that the benchmark can be achieved in practice, we here analyze
accuracy limits of three different vessel segmentation approaches and compare
them with the analytic benchmark. Hoogeveen et al. [2] studied accuracy limits
in determining the vessel width from time-of-flight (TOF) and phase-contrast
(PC) 3D MRA images. Experiments were based on 3D synthetic TOF and PC
MRA images as well as on real images, which were generated by using phan-
tom tubes with known diameters. For measuring the vessel width, the criteria
full-width-half-maximum and full-width-at-10% were applied for TOF and PC
images, respectively. The authors state that for both TOF and PC MRA im-
ages a minimal radius of about 1.5 vox is required for accurate estimation of the
vessel width (allowing a maximal error of the estimated vessel width of 5%).
In a second study focusing on model-based estimation of the volume flow rate
from PC MRA images, Hoogeveen et al. [12] also provide results for estimating
the vessel width. For real PC MRA images of vertebral and basilar arteries, the
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authors state that their approach provides accurate vessel width estimates down
to a radius of about 1.5 vox, which is similar to the result in [2].

Sato et al. [3] developed a differential vessel segmentation approach based on a
multi-scale line filter. A Hessian-based line filter is applied to different scales of a
3D image and vessels are extracted based on these filter responses. To determine
the width of a vessel, the filter responses are compared to filter responses of
an ideal vessel model. It turns out that a maximum response of the multi-scale
filter, which is required to estimate the vessel width, is inherently not obtainable
for thin vessels with a radius below 1.39 vox.

In [4], we developed a model fitting approach for vessel segmentation based
on an analytic 3D parametric intensity model. A 3D Gaussian smoothed cylin-
der is used to model the image intensities of a vessel and the surrounding tissue
within a 3D ROI. Since a closed-form solution of a Gaussian smoothed cylinder
is not known, we used an accurate approximation which switches between two
functions, one based on the Gaussian function and the other based on the Gaus-
sian error function. To segment a vessel we utilize an incremental process based
on least-squares model fitting as well as linear Kalman filtering. The cylinder
model has been applied to segment vessels in 3D MRA and 3D CTA images of
the human. However, we obtain ambiguous estimates of the vessel width for a
radius below about 1.72 vox. The reason is that for this value we automatically
switch the used approximation in our approach.

To summarize, for all three approaches [2,3,4] a limit of R ≈ 1.5 vox has been
stated. Note that, in contrast to Hoogeveen et al. [2], in the approach of Sato
et al. [3] as well as in our model fitting approach [4], an accuracy limit is given
by the approach itself (note also that in both approaches the limits are stated
assuming a standard deviation of the Gaussian image smoothing of 1 vox). In
comparison, as discussed above, the derived CRB in (7) of the vessel radius
does not impose a general limit for small vessel radii such as in [3,4]. Moreover,
above we have shown that the theoretically derived CRB has been achieved
experimentally for thin tubular structures, in particular, for a radius of 0.5 vox.
Therefore, we conclude that the limit of about R ≈ 1.5 vox proposed by all three
approaches in [2,3,4] is not a fundamental limit.

5 Conclusion

We have analyzed limits for estimating the width of thin 3D tubular structures
such as vessels. We have derived a closed-form expression for the Cramér-Rao
bound of the vessel radius and have compared this bound with three previously
proposed limits. Moreover, by experimental investigations we have demonstrated
that the derived lower bound can indeed be achieved by model fitting of a 3D
parametric intensity model. It turns out that the previously stated limit of R ≈
1.5 vox is not a fundamental limit. Instead, we have shown that it is possible
to correctly estimate vessels with a much smaller radius, e.g., R = 0.5 vox. Of
course, to achieve this result certain assumptions have to be met, e.g., intensity
homogeneity, straightness of the cylinder, and adherence to the Gaussian noise
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model. However, all other segmentation approaches also have to make certain
assumptions, and only under these assumptions the algorithms yield best results.
In future work, we plan to study the performance of more complex analytic
models of 3D tubular structures.

Acknowledgment

The MR images have kindly been provided by Philips Research Laboratories
Hamburg, Germany as well as by Dr. med. T. Maier and Dr. C. Lienerth,
Gemeinschaftspraxis Radiologie, Frankfurt/Main, Germany.

References

1. Kirbas, C., Quek, F.: A Review of Vessel Extraction Techniques and Algorithms.
ACM Computing Surveys 36 (2004) 81–121

2. Hoogeveen, R., Bakker, C., Viergever, M.: Limits to the Accuracy of Vessel Di-
ameter Measurement in MR Angiography. J. of Magnetic Resonance Imaging 8
(1998) 1228–1235

3. Sato, Y., Yamamoto, S., Tamura, S.: Accurate Quantification of Small-Diameter
Tubular Structures in Isotropic CT Volume Data Based on Multiscale Line Filter
Responses. In: Proc. MICCAI’04. Volume 3216 of Lecture Notes in Computer
Science., St. Malo, France, Springer (2004) 508–515

4. Wörz, S., Rohr, K.: A New 3D Parametric Intensity Model for Accurate Segmen-
tation and Quantification of Human Vessels. In: Proc. MICCAI’04. Volume 3216
of Lecture Notes in Computer Science., St. Malo, France, Springer (2004) 491–499

5. Rohr, K.: Fundamental Limits in 3D Landmark Localization. In: Proc. IPMI’05.
Volume 3565 of Lecture Notes in Computer Science., Glenwood Springs, CO/USA,
Springer (2005) 286–298

6. Sonka, M., Reddy, G., Winniford, M., Collins, S.: Adaptive Approach to Accurate
Analysis of Small-Diameter Vessels in Cineangiograms. IEEE Trans. on Medical
Imaging 16 (1997) 87–95

7. Dougherty, G., Newmann, D.: Measurement of thickness and density of thin struc-
tures by computed tomography: A simulation study. Medical Physics 26 (1999)
1341–1348

8. Sato, Y., Tanaka, H., Nishii, T., Nakanishi, K., Sugano, N., Kubota, T., Nakamura,
H., Yoshikawa, H., Ochi, T., Tamura, S.: Limits on the Accuracy of 3-D Thickness
Measurements in Magnetic Resonance Images – Effects of Voxel Anisotropy. IEEE
Trans. on Medical Imaging 22 (2003) 1076–1088

9. Bouma, H., Vilanova, A., van Vliet, L., Gerritsen, F.: Correction for the Dislocation
of Curved Surfaces Caused by the PSF in 2D and 3D CT Images. IEEE Trans. on
Pattern Analysis and Machine Intelligence 27 (2005) 1501–1507

10. van Trees, H.: Detection, Estimation, and Modulation Theory, Part I. John Wiley
and Sons, New York, NY/USA (1968)

11. Abramowitz, M., Stegun, I.: Pocketbook of Mathematical Functions. Verlag Harri
Deutsch, Thun und Frankfurt/Main (1984)

12. Hoogeveen, R., Bakker, C., Viergever, M.: MR Phase-Contrast Flow Measurement
With Limited Spatial Resolution in Small Vessels: Value of Model-Based Image
Analysis. J. of Magnetic Resonance in Medicine 41 (1999) 520–528


	Introduction
	Cramér-Rao Lower Bound for 3D Cylinder Model
	3D Width Estimation by Model Fitting
	3D Synthetic Image Data
	3D Medical MR Images

	Comparison of Different Limits
	Conclusion

